Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
ACS Appl Mater Interfaces ; 14(47): 53241-53249, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2119314

ABSTRACT

Shortages of personal protective equipment (PPE) at the start of the COVID-19 pandemic caused medical workers to reuse medical supplies such as N95 masks. While ultraviolet germicidal irradiation (UVGI) is commonly used for sterilization, UVGI can also damage the elastomeric components of N95 masks, preventing effective fit and thus weakening filtration efficacy. Although PPE shortage is no longer an acute issue, the development of sterilizable and reusable UV-resistant elastomers remains of high interest from a long-term sustainability and health perspective. Here, graphene nanosheets, produced by scalable and sustainable exfoliation of graphite in ethanol using the polymer ethyl cellulose (EC), are utilized as UV-resistant additives in polyurethane (PU) elastomer composites. By increasing the graphene/EC loading up to 1 wt %, substantial UV protection is imparted by the graphene nanosheets, which strongly absorb UV light and hence suppress photoinduced degradation of the PU matrix. Additionally, graphene/EC provides mechanical reinforcement, such as increasing Young's modulus, elongation at break, and toughness, with negligible changes following UV exposure. These graphene/EC-PU composites remain mechanically robust over at least 150 sterilization cycles, enabling safe reuse following UVGI. Beyond N95 masks, these UVGI-compatible graphene/EC-PU composites have potential utility in other PPE applications to address the broader issue of single-use waste.


Subject(s)
COVID-19 , Graphite , Humans , Elastomers , Polyurethanes , Ultraviolet Rays , Pandemics
2.
2d Mater ; 9(3)2022 Jul.
Article in English | MEDLINE | ID: covidwho-1895743

ABSTRACT

Rapid, inexpensive, and easy-to-use coronavirus disease 2019 (COVID-19) home tests are key tools in addition to vaccines in the world-wide fight to eliminate national and local shutdowns. However, currently available tests for SARS-CoV-2, the virus that causes COVID-19, are too expensive, painful, and irritating, or not sufficiently sensitive for routine, accurate home testing. Herein, we employ custom-formulated graphene inks and aerosol jet printing (AJP) to create a rapid electrochemical immunosensor for direct detection of SARS-CoV-2 Spike Receptor-Binding Domain (RBD) in saliva samples acquired non-invasively. This sensor demonstrated limits of detection that are considerably lower than most commercial SARS-CoV-2 antigen tests (22.91 ± 4.72 pg/mL for Spike RBD and 110.38 ± 9.00 pg/mL for Spike S1) as well as fast response time (~30 mins), which was facilitated by the functionalization of printed graphene electrodes in a single-step with SARS-CoV-2 polyclonal antibody through the carbodiimide reaction without the need for nanoparticle functionalization or secondary antibody or metallic nanoparticle labels. This immunosensor presents a wide linear sensing range from 1 to 1000 ng/mL and does not react with other coexisting influenza viruses such as H1N1 hemagglutinin. By combining high-yield graphene ink synthesis, automated printing, high antigen selectivity, and rapid testing capability, this work offers a promising alternative to current SARS-CoV-2 antigen tests.

SELECTION OF CITATIONS
SEARCH DETAIL